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• Citable source for budget justification 
• Setting R&D priorities 
• Benchmarking 
• Informing broader analytical activities (TEF, QTR) 
• Track Program R&D progress against goals  
• Identify technology process routes and prioritize funding 
• Program direction decisions:   

• Are we spending our money on the right technology pathways? 
• Within a pathway: Are we focusing our funding on the highest 

priority activities? 

 
 

Techno-Economic Analysis 
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• Nth plant economics 
– Costs represent the case where several biorefineries with this 

technology have been built, which assumes lower contingency and 
other cost escalation factors 

– Assumes no risk premiums, no early-stage R&D, or start-up costs  
• Learning curves 

– The factors applied to costs to adjust pioneer to nth plant costs to 
account for learning 

• Pioneer plant  
– Costs represent a first-of-a-kind construction, where added cost 

factors are included for contingency and risk 
– Most closely represented by IBR projects 
– Few estimates available in the public domain 

• Time value of money 
– Basis of time when comparing costs because of the changes in 

costs due to inflation 
– Currently 2007$ 

Terminology and Concepts 



4 | Office of the Biomass Program eere.energy.gov 

• Design Case:  
– Detailed, peer reviewed process simulation based on ASPEN or 

Chemcad 
– Establishes cost of production at biorefinery boundary 
– Provides estimate of nth plant capital and operating costs 
– Based on best available information at date of design case 
– Scope:  feedstock cost (harvest, collection, storage, grower 

payment), feedstock logistics (handling, size reduction, moisture 
control), conversion cost, profit for biorefinery 

– Excludes: taxes, distribution costs, tax credits or other incentives 
 

• State of technology (SOT):  
– Assessment of the current state of development for a given 

technology pathway  
– Based on best available information from literature, bench scale 

tests, integrated pilot scale operations 

Terminology and Concepts 
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Cost of Production for Hydrocarbon 
Biofuels 

Sources: 
1. Sue Jones et. al., “Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking:  A Design Case”, Pacific Northwest National 

Laboratory, PNNL-18284, available from http:/www.pnl.govFebruary 2009. 
2. Sue Jones et. al., “Techno-Economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process”, Pacific 

Northwest National Laboratory, PNNL-18481, available from http://www.www.pnl.gov, February 2009. 
3. Anex, R. A., et. al., “Techno-Economic Comparison of Biomass-to-Transportation Fuels via Pyrolysis, Gasification, and Biochemical Pathways”, Fuel, July 2010. 
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• Other economically viable technology routes for hydrocarbon biofuels exist, such as conversion of waste and plant oils, and 
sugar-to-hydrocarbons 

• These costs are projected for the Nth Biorefinery Plant, after operation of initial commercial-scale Pioneer Plants  
 

http://www.www.pnl.gov/
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Biofuel Production Costs 
Example of renewable fuels via pyrolysis 
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Pyrolysis costs by unit  and projected cost reductions through R&D 

Renewable gasoline and diesel via pyrolysis 

Feedstocks
Feed Drying, Sizing, Fast Pyrolysis
Upgrading to stable oil
Fuel Finishing
Balance of Plant

49% overall cost 

reduction  (2012 - 2017) 
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Algae Design Configuration 
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FY11 Techno-economic Analysis:  
Algal Baseline Costs 
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Source:  Davis R et. al., “Techno-Economic  Analysis of Autotrophic 
Microalgae for Fuel Production”, Applied Energy 88 (2011) 3524 – 31.  
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TAG/Diesel Selling Prices (OP vs 
PBR) 
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Total = $637 million 

Total = $243 million 
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Projecting Future Algal Costs – How Can 
We Get There? 

Growth rate 25 g/m2/d 25 g/m2/d 30 g/m2/d 30 g/m2/d 1.25 g/L/d 1.25 g/L/d 1.5 g/L/d 1.5 g/L/d 

Lipid content 25% 40% 50% 50% 25% 40% 50% 50% 

Harvesting 

cost 
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Future Design Cases 

• Continued reliance on design cases for many 
needs 
 

• FY13:  more design cases, expansion of scope, 
quicker 
 

• Expansion and integration 
– Pioneer plant costs and nth plant costs 
– Lifecycle greenhouse gas emissions 
– Water footprint 

 
• A design case report should encompass the entire 

supply chain from biomass to fuel blend-stocks 
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• Pioneer plant cost in addition to nth plant 
• Pioneer plant cost could be estimated from ASPEN 

process simulations based on higher contingency, Lang 
factor, and IRR 

• Update to current year$ (2011) 
• Goal dates: 2017, 2022 (RFS), 2030 
• Design cases should be fully integrated across entire 

supply chain 
• Multiple ‘design cases’ will be needed 
• Sustainability metrics – GHG and water 

Program Needs 
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Potential Pathways for Hydrocarbons 
from Biomass 

• Pyrolysis 
 

• Gasification followed by Fischer-Tropsch conversion 
 

• Heterotrophic algae 
 

• Microbial bioconversion of initially clean sugars to 
hydrocarbon precursors 
 

• Hydrogenation of triglycerides 
 

• Butanol 
 

• Ethanol to jet 


